Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(9): 3853-3862, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30755521

RESUMEN

The human dopamine (DA) transporter (hDAT) mediates clearance of DA. Genetic variants in hDAT have been associated with DA dysfunction, a complication associated with several brain disorders, including autism spectrum disorder (ASD). Here, we investigated the structural and behavioral bases of an ASD-associated in-frame deletion in hDAT at N336 (∆N336). We uncovered that the deletion promoted a previously unobserved conformation of the intracellular gate of the transporter, likely representing the rate-limiting step of the transport process. It is defined by a "half-open and inward-facing" state (HOIF) of the intracellular gate that is stabilized by a network of interactions conserved phylogenetically, as we demonstrated in hDAT by Rosetta molecular modeling and fine-grained simulations, as well as in its bacterial homolog leucine transporter by electron paramagnetic resonance analysis and X-ray crystallography. The stabilization of the HOIF state is associated both with DA dysfunctions demonstrated in isolated brains of Drosophila melanogaster expressing hDAT ∆N336 and with abnormal behaviors observed at high-time resolution. These flies display increased fear, impaired social interactions, and locomotion traits we associate with DA dysfunction and the HOIF state. Together, our results describe how a genetic variation causes DA dysfunction and abnormal behaviors by stabilizing a HOIF state of the transporter.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Dopamina/genética , Locomoción/genética , Animales , Animales Modificados Genéticamente , Trastorno del Espectro Autista/fisiopatología , Cristalografía por Rayos X , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Espectroscopía de Resonancia por Spin del Electrón , Miedo/fisiología , Humanos , Relaciones Interpersonales , Locomoción/fisiología , Modelos Moleculares , Mutación , Eliminación de Secuencia/genética
2.
Mol Autism ; 6: 8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25741436

RESUMEN

Our laboratory recently characterized a novel autism spectrum disorder (ASD)-associated de novo missense mutation in the human dopamine transporter (hDAT) gene SLC6A3 (hDAT T356M). This hDAT variant exhibits dysfunctional forward and reverse transport properties that may contribute to DA dysfunction in ASD. Here, we report that Zn(2+) reverses, at least in part, the functional deficits of ASD-associated hDAT variant T356M. These data suggest that the molecular mechanism targeted by Zn(2+) to restore partial function in hDAT T356M may be a novel therapeutic target to rescue functional deficits in hDAT variants associated with ASD.

3.
EBioMedicine ; 2(2): 135-146, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25774383

RESUMEN

BACKGROUND: Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. METHODS: We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). OUTCOMES: Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. INTERPRETATION: We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD.

4.
Nature ; 515(7526): 209-15, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25363760

RESUMEN

The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Cromatina/genética , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Sinapsis/metabolismo , Transcripción Genética/genética , Secuencia de Aminoácidos , Trastornos Generalizados del Desarrollo Infantil/patología , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Exoma/genética , Femenino , Mutación de Línea Germinal/genética , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense/genética , Red Nerviosa/metabolismo , Oportunidad Relativa
5.
Mol Autism ; 4(1): 28, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23953133

RESUMEN

BACKGROUND: Rare genetic variation is an important class of autism spectrum disorder (ASD) risk factors and can implicate biological networks for investigation. Altered serotonin (5-HT) signaling has been implicated in ASD, and we and others have discovered multiple, rare, ASD-associated variants in the 5-HT transporter (SERT) gene leading to elevated 5-HT re-uptake and perturbed regulation. We hypothesized that loci encoding SERT regulators harbor variants that impact SERT function and/or regulation and therefore could contribute to ASD risk. The adenosine A3 receptor (A3AR) regulates SERT via protein kinase G (PKG) and other signaling pathways leading to enhanced SERT surface expression and catalytic activity. METHODS: To test our hypothesis, we asked whether rare variants in the A3AR gene (ADORA3) were increased in ASD cases vs. controls. Discovery sequencing in a case-control sample and subsequent analysis of comparison exome sequence data were conducted. We evaluated the functional impact of two variants from the discovery sample on A3AR signaling and SERT activity. RESULTS: Sequencing discovery showed an increase of rare coding variants in cases vs. controls (P=0.013). While comparison exome sequence data did not show a significant enrichment (P=0.071), combined analysis strengthened evidence for association (P=0.0025). Two variants discovered in ASD cases (Leu90Val and Val171Ile) lie in or near the ligand-binding pocket, and Leu90Val was enriched individually in cases (P=0.040). In vitro analysis of cells expressing Val90-A3AR revealed elevated basal cGMP levels compared with the wildtype receptor. Additionally, a specific A3AR agonist increased cGMP levels across the full time course studied in Val90-A3AR cells, compared to wildtype receptor. In Val90-A3AR/SERT co-transfections, agonist stimulation elevated SERT activity over the wildtype receptor with delayed 5-HT uptake activity recovery. In contrast, Ile171-A3AR was unable to support agonist stimulation of SERT. Although both Val90 and Ile171 were present in greater numbers in these ASD cases, segregation analysis in families showed incomplete penetrance, consistent with other rare ASD risk alleles. CONCLUSIONS: Our results validate the hypothesis that the SERT regulatory network harbors rare, functional variants that impact SERT activity and regulation in ASD, and encourages further investigation of this network for other variation that may impact ASD risk.

6.
Genomics ; 102(4): 270-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23743231

RESUMEN

Two common sources of DNA for whole exome sequencing (WES) are whole blood (WB) and immortalized lymphoblastoid cell line (LCL). However, it is possible that LCLs have a substantially higher rate of mutation than WB, causing concern for their use in sequencing studies. We compared results from paired WB and LCL DNA samples for 16 subjects, using LCLs of low passage number (<5). Using a standard analysis pipeline we detected a large number of discordant genotype calls (approximately 50 per subject) that we segregated into categories of "confidence" based on read-level quality metrics. From these categories and validation by Sanger sequencing, we estimate that the vast majority of the candidate differences were false positives and that our categories were effective in predicting valid sequence differences, including LCLs with putative mosaicism for the non-reference allele (3-4 per exome). These results validate the use of DNA from LCLs of low passage number for exome sequencing.


Asunto(s)
Células Sanguíneas/fisiología , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Alelos , Línea Celular , Biología Computacional , Genotipo , Humanos , Mosaicismo , Mutación , Reproducibilidad de los Resultados
7.
Nature ; 485(7397): 242-5, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22495311

RESUMEN

Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.


Asunto(s)
Trastorno Autístico/genética , Proteínas de Unión al ADN/genética , Exones/genética , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Factores de Transcripción/genética , Estudios de Casos y Controles , Exoma/genética , Salud de la Familia , Humanos , Modelos Genéticos , Herencia Multifactorial/genética , Fenotipo , Distribución de Poisson , Mapas de Interacción de Proteínas
8.
Mol Pharmacol ; 80(3): 458-65, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21705486

RESUMEN

Activation of A3 adenosine receptors (A3ARs) rapidly enhances the activity of antidepressant-sensitive serotonin (5-HT) transporters (SERTs) in vitro, ex vivo, and in vivo. A3AR agonist stimulation of SERT activity is lost in A3AR knockout mice. A3AR-stimulated SERT activity is mediated by protein kinase G1 (PKGI)- and p38 mitogen-activated protein kinase (MAPK)-linked pathways that support, respectively, enhanced SERT surface expression and catalytic activation. The mechanisms by which A3ARs target SERTs among other potential effectors is unknown. Here we present evidence that A3ARs are coexpressed with SERT in midbrain serotonergic neurons and form a physical complex in A3AR/hSERT cotransfected cells. Treatment of A3AR/SERT-cotransfected Chinese hamster ovary cells with the A3AR agonist N6-(3-iodobenzyl)-N-methyl-5'-carbamoyladenosine (1 µM, 10 min), conditions previously reported to increase SERT surface expression and 5-HT uptake activity, enhanced the abundance of A3AR/SERT complexes in a PKGI-dependent manner. Cotransfection of SERT with L90V-A3AR, a hyperfunctional coding variant identified in subjects with autism spectrum disorder, resulted in a prolonged recovery of receptor/transporter complexes after A3AR activation. Because PKGI and nitric-oxide synthetase are required for A3AR stimulation of SERT activity, and proteins PKGI and NOS both form complexes with SERT, our findings suggest a mechanism by which signaling pathways coordinating A3AR signaling to SERT can be spatially restricted and regulated, as well as compromised by neuropsychiatric disorders.


Asunto(s)
Receptor de Adenosina A3/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Animales , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Inmunohistoquímica , Ratones , Ratones Noqueados , Unión Proteica
9.
Neuropsychopharmacology ; 32(6): 1404-20, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17047665

RESUMEN

Many drugs are used or abused in social contexts without understanding the ramifications of their use. In this study, we examined the effects of a newly popular drug, 5-methoxy-diisopropyltryptamine (5-MEO-DIPT; 'foxy' or 'foxy-methoxy'). Two experiments were performed. In the first, 5-MEO-DIPT (0, 10, or 20 mg/kg) was administered to rats four times on a single day and animals were examined 3 days later. The animals that received 5-MEO-DIPT demonstrated hypothermia during the period of drug administration and delayed mild hyperthermic rebound for at least 48 h. Corticosterone levels in plasma were elevated in a dose-dependent manner compared to saline-treated animals with minor changes in 5-HT turnover and no changes in monoamine levels. In experiment 2, rats were examined in behavioral tasks following either 0 or 20 mg/kg of 5-MEO-DIPT. The animals treated with 5-MEO-DIPT showed hypoactivity and an attenuated response to (+)-methamphetamine-induced stimulation (1 mg/kg). In a test of path integration (Cincinnati water maze), 5-MEO-DIPT-treated animals displayed deficits in performance compared to the saline-treated animals. No differences were noted in the ability of the animals to perform in the Morris water maze or on tests of novel object or place recognition. The data demonstrate that 5-MEO-DIPT alters the ability of an animal to perform certain cognitive tasks, while leaving others intact and disrupts the endocrine system. 5-MEO-DIPT may have the potential to induce untoward effects in humans.


Asunto(s)
5-Metoxitriptamina/análogos & derivados , Conducta Animal/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Corticosterona/sangre , Drogas de Diseño/farmacología , 5-Metoxitriptamina/farmacología , Animales , Monoaminas Biogénicas/metabolismo , Peso Corporal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Metanfetamina/farmacología , Actividad Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Conducta Estereotipada/efectos de los fármacos , Natación
10.
Neurotoxicol Teratol ; 28(4): 459-65, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16905291

RESUMEN

Recent investigations have demonstrated that prenatal 3,4-methylenedeoxymethamphetamine (MDMA; ecstasy) exposure in rats results in significant and persistent changes in the developing brain. However, no published pharmacokinetic studies exist demonstrating that MDMA administered during pregnancy passes to the fetal compartment. This leaves open the question whether MDMA is directly acting on the fetal brain to produce the observed changes in previous studies, or whether such effects are an indirect result of MDMA administration to the pregnant dam. Therefore, pregnant rats were administered a single dose of MDMA (15 mg/kg, subcutaneous) at embryonic day 14 (E14) and the levels of MDMA and its metabolite 3,4-methylenedioxyamphetamine (MDA) were quantified in maternal plasma, amniotic fluid, and fetal brain over 8 h by HPLC. The time course of MDMA and MDA metabolism was reliable and reproducible in all tissues. There was a strong correlation between fetal amniotic fluid and fetal brain suggesting that amniotic fluid could be used to reliably estimate fetal brain levels without directly utilizing fetal brain tissue. These data also provide a framework for subsequent in vitro cell culture studies using biologically relevant MDMA doses.


Asunto(s)
Feto/metabolismo , Alucinógenos/farmacocinética , N-Metil-3,4-metilenodioxianfetamina/farmacocinética , Preñez/metabolismo , 3,4-Metilenodioxianfetamina/farmacocinética , Líquido Amniótico/metabolismo , Animales , Biotransformación , Encéfalo/metabolismo , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Útero/metabolismo
11.
Neurotoxicol Teratol ; 25(5): 509-17, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12972064

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) use has risen among women of childbearing age. Consequently, there is a substantial risk for fetal exposure from women who are, or become pregnant while abusing MDMA. However, attempts to demonstrate that prenatal MDMA results in neurochemical alterations in rat models have failed. MDMA administration to neonatal rats (third trimester equivalent) results in significant and persistent neurochemical and behavioral alterations, yet human epidemiologic data suggest that the vast majority of prenatal exposure is limited to the first trimester. The following study was conducted to reexamine the potential for prenatal MDMA administration to produce lasting postnatal neurochemical and behavioral alterations using a new rodent model. Pregnant rats were administered twice-daily injections of MDMA (15 mg/kg sc) or saline from embryonic days (E) 14-20. Prenatally exposed pups were examined on postnatal days (P) 3 and 21. At P3, MDMA offspring showed reductions in the dopamine metabolite homovanillic acid which persisted through P21, along with reductions in the serotonin (5-HT) metabolite, 5-HIAA. Prenatally exposed MDMA animals at P21 also had reduced dopamine and 5-HT turnover in the nucleus accumbens. Increases in tyrosine hydroxylase fiber density were found in the frontal cortex, striatum and nucleus accumbens of MDMA animals. In addition, prenatal MDMA significantly increased locomotor activity of P21 pups in a 20-min novel cage environment. These findings provide the first evidence of lasting neurochemical and behavioral alterations following prenatal MDMA. Further investigation is warranted to elucidate possible mechanisms of action and to monitor children gestationally exposed to MDMA.


Asunto(s)
3,4-Metilenodioxianfetamina/toxicidad , Monoaminas Biogénicas/metabolismo , Conducta Exploratoria/efectos de los fármacos , Alucinógenos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Prosencéfalo/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Envejecimiento , Animales , Animales Recién Nacidos , Conducta Animal , Constitución Corporal/fisiología , Temperatura Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Química Encefálica , Tronco Encefálico/química , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/crecimiento & desarrollo , Cuerpo Estriado/química , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/crecimiento & desarrollo , Dopamina/metabolismo , Femenino , Ácido Homovanílico/metabolismo , Masculino , Núcleo Accumbens/química , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/crecimiento & desarrollo , Embarazo , Prosencéfalo/química , Prosencéfalo/enzimología , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales , Factores de Tiempo
12.
Brain Res Dev Brain Res ; 147(1-2): 177-82, 2003 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-14741762

RESUMEN

Growing concerns surround the risk of fetal exposure to 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Prior animal studies using neonatal rats administered MDMA from postnatal days (P) 11-20 (a period approximating third trimester brain development in humans) have demonstrated long-lasting decrements in serotonin (5-HT) and learning; however, no studies have examined the acute post-MDMA response of the brain at this early age. Specifically, it is of interest whether MDMA administration to neonatal rats produces the expected depletion of monoamines and whether the brain exhibits any ameliorative response to the pharmacologic insult. In the current study, this model was employed to determine whether forebrain and brainstem dopamine (DA) and 5-HT neurochemistry were altered 24 h after the last injection (P21), and whether brain-derived neurotrophic factor (BDNF) was upregulated in response to MDMA exposure. All forebrain structures examined (frontal cortex, hippocampus, and striatum) showed significant MDMA-induced reductions in 5-HT and its metabolite, 5-HIAA, and significant increases in the DA metabolite, HVA, as well as DA turnover (HVA/DA). In the brainstem, there were significant increases in 5-HIAA, HVA and DA turnover. BDNF was significantly increased (19-38%) in all forebrain structures and in the brainstem in MDMA-exposed neonates versus saline controls. These data suggest that MDMA exposure to the developing rat brain from P11-20 produces similar alterations in serotonin and dopamine neurochemistry to those observed from adult administrations. In addition, a compensatory increase in BDNF was observed and may be the brains ameliorative response to minimize MDMA effects. This is the first report demonstrating that MDMA exposure results in increased levels of BDNF and that such increases are correlated with changes in monoamine levels. Future research is needed to elucidate any deleterious effects MDMA-induced increases in trophic activity might have on the developing brain and to examine earlier gestational exposure periods in order to assess the risk throughout pregnancy.


Asunto(s)
Animales Recién Nacidos/fisiología , Química Encefálica/efectos de los fármacos , Tronco Encefálico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dopamina/metabolismo , Alucinógenos/toxicidad , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Prosencéfalo/metabolismo , Serotonina/metabolismo , Animales , Tronco Encefálico/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Femenino , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Embarazo , Prosencéfalo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...